Nonlinear channel equalization for wireless communication systems using Legendre neural networks
نویسندگان
چکیده
In this paper, we present a computationally efficient neural network (NN) for equalization of nonlinear communication channels with 4-QAM signal constellation. The functional link NN (FLANN) for nonlinear channel equalization which we had proposed earlier, offers faster mean square error (MSE) convergence and better bit error rate (BER) performance compared to multilayer perceptron (MLP). Here, we propose a Legendre NN (LeNN) model whose performance is better than the FLANN due to simple polynomial expansion of the input in contrast to the trigonometric expansion in the latter. We have compared the performance of LeNN-, FLANNand MLP-based equalizers using several performance criteria and shown that the performance of LeNN is superior to that of MLP-based equalizer, in terms of MSE convergence rate, BER and computational complexity, especially, in case of highly nonlinear channels. LeNN-based equalizer has similar performance as FLANN in terms of BER and convergence rate but it provides significant computational advantage over the FLANN since the evaluation of Legendre functions involves less computation compared to trigonometric functions.
منابع مشابه
Performance of the Wavelet Transform-Neural Network Based Receiver for DPIM in Diffuse Indoor Optical Wireless Links in Presence of Artificial Light Interference
Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both doma...
متن کاملComplex bilinear recurrent neural network for equalization of a digital satellite channel
Equalization of satellite communication using complex-bilinear recurrent neural network (C-BLRNN) is proposed. Since the BLRNN is based on the bilinear polynomial, it can be used in modeling highly nonlinear systems with time-series characteristics more effectively than multilayer perceptron type neural networks (MLPNN). The BLRNN is first expanded to its complex value version (C-BLRNN) for dea...
متن کاملComplex-Valued Neural Networks for Equalization of Communication Channels
The equalization of digital communication channel is an important task in high speed data transmission techniques. The multipath channels cause the transmitted symbols to spread and overlap over successive time intervals. The distortion caused by this problem is called inter-symbol interference (ISI) and is required to be removed for reliable communication of data over communication channels. I...
متن کاملReconstruction of chaotic signals with application to channel equalization in chaos-based communication systems
A number of schemes have been proposed for communication using chaos over the past years. Regardless of the exact modulation method used, the transmitted signal must go through a physical channel which undesirably introduces distortion to the signal and adds noise to it. The problem is particularly serious when coherent-based demodulation is used because the necessary process of chaos synchroni...
متن کاملAdaptive Channel Equalization for Nonlinear Channels using Signed Regressor FLANN
Wireless communication systems are affected by inter-symbol interference (ISI), co-channel interference in the presence of additive white Gaussian noise. ISI is primarily due to the distortion caused by frequency and time selectivity of the fading channel and it causes performance degradation. Equalization techniques are used to mitigate the effect of ISI and noise for better demodulation. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 89 شماره
صفحات -
تاریخ انتشار 2009